Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities.more » « lessFree, publicly-accessible full text available May 15, 2026
-
Abstract We report on a long-lasting, elevated gamma-ray flux state from VER J0521+211 observed by VERITAS, MAGIC, and Fermi-LAT in 2013 and 2014. The peak integral flux above 200 GeV measured with the nightly binned light curve is (8.8 ± 0.4) × 10 −7 photons m −2 s −1 , or ∼37% of the Crab Nebula flux. Multiwavelength observations from X-ray, UV, and optical instruments are also presented. A moderate correlation between the X-ray and TeV gamma-ray fluxes was observed, and the X-ray spectrum appeared harder when the flux was higher. Using the gamma-ray spectrum and four models of the extragalactic background light (EBL), a conservative 95% confidence upper limit on the redshift of the source was found to be z ≤ 0.31. Unlike the gamma-ray and X-ray bands, the optical flux did not increase significantly during the studied period compared to the archival low-state flux. The spectral variability from optical to X-ray bands suggests that the synchrotron peak of the spectral energy distribution (SED) may become broader during flaring states, which can be adequately described with a one-zone synchrotron self-Compton model varying the high-energy end of the underlying particle spectrum. The synchrotron peak frequency of the SED and the radio morphology of the jet from the MOJAVE program are consistent with the source being an intermediate-frequency-peaked BL Lac object.more » « less
An official website of the United States government
